BRCA1/BRCA2: CanVIG-UK Gene-Specific Guidance

Date: 01/09/2021 Version: 1.12

A Garrett¹, L Loong¹, L King¹, M Durkie², J. Drummond³, G.J. Burghel⁴, R. Robinson⁵, A Callaway^{6,7}, I. Berry⁵, A. Wallace⁴, S. Ellard⁸, E Baple⁸, H. Hanson^{1,9}, C.Turnbull^{1,10}

- 1) Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
- 2) Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust
- 3) East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- 4) Manchester Centre for Genomic Medicine and NW Laboratory Genetics Hub, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- 5) Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- 6) Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
- 7) Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
- 8) Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
- 9) St George's University Hospitals NHS Foundation Trust, Tooting, London, UK
- 10) The Royal Marsden NHS Foundation Trust, Fulham Road, London

For use in conjunction with CanVIG-UK Consensus Specification for Cancer susceptibility Genes of ACGS Best Practice Guidelines for Variant Classification. Evidence lines for which there are no gene-specific recommendations should be reviewed in context of CanVIG-UK Consensus Specification for Cancer Susceptibility Genes.

Evidence element and evidence strengths allowed	Thresholds/data-sources/applications specifically relevant to BRCA1/BRCA2				
PS4: Case-control: The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls	Controls should represent appropriate ethnicity and sex matching (i.e. female non-cancer NFE controls should be used if the case series consists predominantly of				

Evidence towards Pathogenicity

PM2: Absent from controls (or at extremely low frequency if recessive) in ESP, 1000GP, or ExAC	_MOD _SUP	Cancer-free female controls (of any/all ethnicities) should be used (due to low penetrance in male pathogenic variant carriers). Otherwise, the main CanVIG-UK consensus guidance should be followed				
PVS1: Predicted null variant (in a gene where LOF is a known mechanism of disease)	_VSTR _SUP	It is predicted that truncating variants occurring at the 3' end of the gene will not undergo NMD. The residues below demarcate the consensus boundary, 3' of which protein truncating variants are not established to result in NMD and/or impairment of function of residual protein. BRCA1 (NM_007294.3): 1855 ¹ BRCA2 (NM_000059.3): 3309 ² A number of variants at canonical splice sites are predicted or known to lead to naturally occurring in-frame RNA isoforms that may rescue gene functionality. ENIGMA has complied the below list of splice variants for which the variant transcript may be functional. Gene Region Bases intron 5 c.301+1 (exon 7 acceptor) c.442-2 c.548-1 c.548-1 c.548-1 c.548-1 c.548-2 c.670+1 c.670+2 intron 10 c.4096+1 (exon 10 donor) c.4096+2 intron 11 c.4186-1 (exon 13 acceptor) c.4358-1 (exon 13 acceptor) c.4358-1 (exon 13 acceptor) c.4358-1 exon 12 c.6842-1 c.6837+1 dotted from Spurdle et al, 2017 ¹				
PS1: Same amino acid	STR	Within forthcoming ENIGMA guidance it is anticipated that these				
change as an established variant		elements will all be incorporated within PP3 and only awarded to variants within key domains:				
PM4: Protein-length- changing variant	_MOD	In the interim, we recommend:				
	_SUP	 Use of PM1_sup/PM4_sup for any variant within BRCA1 RING (aa 1-101), BRCT (aa1650-1863) COILED-COIL 				
PM5: Novel missense change at an amino acid residue where a different	_MOD _SUP	DOMAIN (aa 1391-1424) and BRCA2 DNA-binding domain (aa 2481-3186)				
missense change		 Use of PM1_mod/PM4_mod for missense at specific 				
determined to be pathogenic		residues ³ : RING: 18, 22, 37, 39, 41, 44, 47, 61, 64, 71				
seen before PP3: In silico: Multiple lines	<u>eup</u>	BRCT: 1685, 1688, 1697, 1699, 1706, 1708, 1715, 1736,				
of computational evidence	_SUP	1738, 1739, 1748, 1764, 1766, 1770, 1775, 1786, 1837,				
support a deleterious effect		1838, 1839, 1853 DBD: 2607, 2626, 2627, 2663, 2722, 2723, 2748, 3052				
on the gene or gene product		DBD: 2607, 2626, 2627, 2663, 2722, 2723, 2748, 3052, 3124				
PM1, PP2: Enrichment/constraint:	_STR	 PM1 cannot be used where functional data are being used 				
PP2 : Missense variant in a		for PS3, as per main CanVIG-UK guidance				
gene that has a low rate of	_SUP	PP2 should not be used for BRCA1/BRCA2				
benign missense variation		Use of PM5, PS1, PP3 otherwise as per CanVIG-UK Consensus Specification				
and in which missense variants are a common						
mechanism of disease						
PM1: Located in a						
		2				

mutational hot spot and/or critical and well-established functional domain (e.g. active site of an enzyme) without benign variation PS3: Functional: Well- established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product	_VSTR _STR _MOD _SUP	BRCA1: Findlay et al, 2018 ⁴ : Strong Bouwman et al, 2020 ⁵ : Strong Fernandes et al, 2019 ⁶ : Supporting Petitalot et al, 2019 ⁷ : Supporting BRCA2: Guidugli et al, 2018 ⁸ /Hart et al, 2019 ⁹ /Richardson et al, 2021 ¹⁰ : Strong <u>See CanVIG Functional Assays Scores</u> See the table at the bottom of this document for guidance on combining assay results
PP1: Co-segregation with disease in multiple affected family members in a gene definitively known to cause the disease	_VSTR _STR _MOD _SUP	Segregation evidence extracted from multifactorial analysis data can be used within PP1/BS4 using the thresholds specified in the PP5/BP6 guidance. Where combined with multiple evidence of other types, segregation evidence from multifactorial analysis data should be incorporated into the PP5/BP6 criteria Meiosis counting approaches may be used in addition if this evidence comes from families not already included in the multifactorial analyses. Evidence cannot exceed 'Very strong'
PS2/PM6: De novo (maternity and paternity confirmed/unconfirmed) in a patient with the disease and no family history	_STR _MOD _SUP	
PM3: in trans with a pathogenic variant (recessive disorders)	_STR _MOD _SUP	 Frequency data regarding co-occurrence in trans extracted from multifactorial analyses should be incorporated into PM3 or BP2 using the thresholds described in the PP5/BP6 guidance. Where combined with multiple evidence of other types, frequency data regarding co-occurrence in trans from multifactorial analyses should be incorporated into PP5/BP6 <i>In addition</i>, the <u>SVI recommendations for in trans Criterion</u> (PM3) can be used for either BRCA1 or BRCA2 for individuals with a Fanconi anaemia phenotype if this evidence comes from families not already included in the multifactorial analyses used for PP5. Evidence towards a Fanconi phenotype comprise: Clinical: diagnosis of childhood cancer or skeletal/structural/developmental abnormalities Molecular/Cellular: aberration on mitomycin-induced chromosomal breakage +/- depletion of BRCA2 in lymphocytes Both clinical and molecular/cellular aberrations must be present for a case to contribute to evidence Evidence cannot exceed 'Strong' <i>Note:</i> Caution is required in inferring the pathogenicity for the monoallelic phenotype, as variants may be hypomorphic (e.g. a variant contributing and causing a Fanconi anaemia phenotype may be low penetrance for breast cancer). Where the majority of evidence for variant pathogenicity comes from observations of the variant in cases of Fanconi Anaemia, it may be appropriate to comment on this in the clinical report

PP5: Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation	_VSTR _STR _MOD _SUP	 Published multifactorial analysis data providing likelihood ratios (LR) or log likelihood ratios (LLR) may be used as data sources encompassing: Segregation (PP1/BS4) Specificity of familial and/or tumour phenotype (PP4) Co-occurrence in trans (PM3/BP2) 					
		Where individual likelihood ratios for a particular evidence type do not line up with evidence (exponent) points required for a specific evidence strength, the combined LLR/LR encompassing multiple evidence types can be used instead to represent the totality of evidence and applied within PP5					
		Suitable analyses: • Easton et al, 2007 ¹¹ • Lindor et al, 2011 ¹² • Parsons et al, 2020 ¹³					
				lid LR/LLRs are ost recent public			
			2020) this sho	as a LR (likelihoo uld be converted able below.			
		Where evidence is supplied as a natural LLR (log likelihood ratio, eg Easton et al, 2007), this should be converted to a LR (for example using the =EXP() function in excel) before conversion to Evidence (Exponent) Points using the table below (ie converted from the LR to a LLR base 2.08)					
			Evidence		1		
		Likelihood (Exponent) Ratio Points Strength					
		2.1	1	SUP			
		4.3	2	MOD			
		9	3				
		18.7	4	STR			
		38.9	5				
		81	6				
		168.4	7				
		350.4	8	VSTR	OR		
		classification of ≥2 acciliation of laborat ≥1 Nort where the unavail approv ENIGM	of LP/P after 20 redited North A ories OR th American co there is explicit able evidence ed ClinGen Ex IA	merican comme ommercial diagno citation of utilisa from their data s pert Group (3 st	e classification from: ercial diagnostic ostic laboratory ation of otherwise series OR ar on ClinVar), ie		
		specification.		ation, as per Uk assifications, co			

PP4: Phenotypic specificity (Patient's phenotype or family history is highly specific for a disease with a single genetic aetiology)	_STR _MOD _SUP	Tumour and family history phenotypic data extracted from multifactorial analyses should be incorporated into PP4 or BP5 using the thresholds described in the PP5/BP6 guidance. Where combined with multiple evidence of other types, tumour and family history phenotypic data from multifactorial analyses are incorporated into the PP5 evidence criterion. Patient phenotypic evidence whose strength cannot be quantified should not be
		used. Evidence cannot exceed 'Strong'

Evidence towards Benignity

BA1/BS1: Allele frequency	C 4	BA1: MTAF = 0.001 (0.1%)
is "too high" in ExAC or	_SA	BS1: MTAF = 0.0001 (0.1%)
gnomAD for disorder	_STR	
ghomad for disorder		The U95%CI should be used as the filtering allele count for the
		MTAF. This can be calculated using <u>cardiodb</u> or within gnomAD
		(see <u>training resources</u> from Miranda Durkie for methodology)
		Cancer-free female controls should be used (due to low
		penetrance in male pathogenic variant carriers)
BS2: Observation in	_STR	
controls inconsistent with	_SUP	
disease penetrance.		
Observed in a healthy adult		
individual for a recessive		
(homozygous), dominant		
(heterozygous), or X-linked		
(hemizygous) disorder, with		
full penetrance expected at		
an early age		
BP4: In silico: Multiple lines	_SUP	
of computational evidence		
suggest no impact on gene		
or gene product		
(conservation, evolutionary,		
splicing impact, etc.)		
BP1: Missense variant in a	_SUP	Can be used for missense variants with no predicted splicing
gene for which primarily		effect (as per main CanVIG-UK consensus specification) at non-
gene for which primarily truncating variants are		effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT
gene for which primarily		effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease		effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent)	_SUP	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing		effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict		effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice		effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence	_SUP	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame		effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame deletions/insertions in a	_SUP	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame deletions/insertions in a repetitive region	_SUP	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame deletions/insertions in a repetitive region BS3: Well-established <i>in</i>	_SUP	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame deletions/insertions in a repetitive region BS3: Well-established <i>in</i> vitro or <i>in vivo</i> functional	_SUP	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame deletions/insertions in a repetitive region BS3: Well-established <i>in</i> <i>vitro</i> or <i>in vivo</i> functional studies show no damaging	_SUP	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame deletions/insertions in a repetitive region BS3: Well-established <i>in</i> vitro or <i>in vivo</i> functional studies show no damaging effect on protein function or	_SUP	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame deletions/insertions in a repetitive region BS3: Well-established <i>in</i> <i>vitro</i> or <i>in vivo</i> functional studies show no damaging effect on protein function or splicing	_SUP _SUP _STR _MOD	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and BRCA2 DNA-binding domain (aa 2481-3186)
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame deletions/insertions in a repetitive region BS3: Well-established <i>in</i> <i>vitro</i> or <i>in vivo</i> functional studies show no damaging effect on protein function or splicing BS4: Non segregation with	_SUP	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame deletions/insertions in a repetitive region BS3: Well-established <i>in</i> <i>vitro</i> or <i>in vivo</i> functional studies show no damaging effect on protein function or splicing	_SUP _SUP _STR _MOD	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and BRCA2 DNA-binding domain (aa 2481-3186)
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame deletions/insertions in a repetitive region BS3: Well-established <i>in</i> <i>vitro</i> or <i>in vivo</i> functional studies show no damaging effect on protein function or splicing BS4: Non segregation with	_SUP	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and BRCA2 DNA-binding domain (aa 2481-3186)
gene for which primarily truncating variants are known to cause disease BP7: Synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence BP3: In-frame deletions/insertions in a repetitive region BS3: Well-established <i>in</i> <i>vitro</i> or <i>in vivo</i> functional studies show no damaging effect on protein function or splicing BS4: Non segregation with	_SUP	effect (as per main CanVIG-UK consensus specification) at non- conserved residues outside of BRCA1 RING (aa 1-101), BRCT (aa 1650-1863) COILED-COIL DOMAIN (aa 1391-1424) and BRCA2 DNA-binding domain (aa 2481-3186)

BP2: Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis	_STR _SUP	*see PM3			
BP6: Reputable source recently reports variant as	_STR	*see PP5			
benign, but the evidence is not available to the laboratory to perform an	_SUP	Likelihood Ratio	Evidence (Exponent) Points	Evidence Strength	
independent evaluation		0.48	-1	SUP	
		0.23	-2		
		0.11	-3		
		0.05	-4	STR	
BP5: Alternate molecular basis for disease	_SUP	*see PP4			

Recommendations for the management of conflicting functional assay results See table below for management of discrepancy for BRCA1 variants between Findlay et al, 2018⁴ and Bouwman et al, 2020⁵ discordant assay results. For more general guidance regarding conflicting results from other functional assays, refer to the table in the main CanVIG-UK consensus specification.

Findlay Class	Findlay Score	Bouwman Platinum	Bouwman Olaparib	Bouwman DR-GFP	PS3_ST R	BS3_ST R
LOF	<-1.328	All deleterious/ likely deleterious (1 intermediate allowed)			✓	×
LOF	<-1.328	Any are neutral/likely neutral			×	×
INT (towards LOF)	-1.328 to -1.038	All deleterious/ likely deleterious			~	×
INT (towards FUNC)	-1.038 to -0.748	All neutral/likely neutral		×	~	
INT	-1.328 to -0.78	Conflicting results or any intermediate			×	×
FUNC	>-0.748	All neutral/likely neutral (1 intermediate allowed)			×	\checkmark
FUNC	>-0.748	Any are deleterious/likely deleterious			×	×

N.B: Bouwman et al, 2020 "not clear" refers to opposite categorisation ± the standard deviation of repeat experiments and should be treated as conflicting assay results. Where a variant is LOF on the Findlay et al assay and has an RNA score of <-2, this indicates that LOF is due to interference with splicing and therefore should not be treated as conflicting evidence if the variant is neutral on the Bouwman et al assay.

Version History/Amendments

Revised version	Date	Section	Update	Amended by	Approved by
1.12	01/09/2021	PP4	Guidance on use of LLRs from published epidemiological studies amended to account for the use of natural logs in the statistics presented	Garrett	Turnbull
1.12	01/09/2021	PM1	Addition of critical residues in the DNA binding domain of BRCA2. Critical residues in all listed functional domains updated to mirror draft 2021 ENIGMA guidance	Garrett	Turnbull
1.12	01/09/2021	BP1	Resolution of typo in BRCT region specification	Garrett	Turnbull

<u>References</u>

- 1. Draft ACMG/AMP Classification Rules Specified for BRCA1 & BRCA2 ENIGMA Variant Curation Expert Panel, Classification Criteria V1.0 2021-06-21., 2021.
- Mesman RLS, Calléja F, Hendriks G, et al. The functional impact of variants of uncertain significance in BRCA2. *Genetics in medicine : official journal of the American College of Medical Genetics* 2019;21(2):293-302. doi: 10.1038/s41436-018-0052-2 [published Online First: 2018/07/11]
- 3. Spurdle A. ENIGMA BRCA1/2 Gene Variant Classification Criteria <u>https://enigmaconsortium.org/wp-content/uploads/2020/08/ENIGMA_Rules_2017-06-29-</u> <u>v2_5_1.pdf</u> 2017 [
- Findlay GM, Daza RM, Martin B, et al. Accurate classification of BRCA1 variants with saturation genome editing <u>https://sge.gs.washington.edu/BRCA1/</u>. *Nature* 2018;562(7726):217-22. doi: 10.1038/s41586-018-0461-z [published Online First: 2018/09/14]
- Bouwman P, van der Heijden I, van der Gulden H, et al. Functional Categorization of BRCA1 Variants of Uncertain Clinical Significance in Homologous Recombination Repair Complementation Assays. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2020;26(17):4559-68. doi: 10.1158/1078-0432.Ccr-20-0255 [published Online First: 2020/06/18]
- Fernandes VC, Golubeva VA, Di Pietro G, et al. Impact of amino acid substitutions at secondary structures in the BRCT domains of the tumor suppressor BRCA1: Implications for clinical annotation. *The Journal of biological chemistry* 2019;294(15):5980-92. doi: 10.1074/jbc.RA118.005274 [published Online First: 2019/02/16]
- Petitalot A, Dardillac E, Jacquet E, et al. Combining Homologous Recombination and Phosphopeptide-binding Data to Predict the Impact of BRCA1 BRCT Variants on Cancer Risk. *Mol Cancer Res* 2019;17(1):54-69. doi: 10.1158/1541-7786.Mcr-17-0357 [published Online First: 2018/09/28]
- B. Guidugli L, Shimelis H, Masica DL, et al. Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches. *American journal of human genetics* 2018;102(2):233-48. doi: 10.1016/j.ajhg.2017.12.013 [published Online First: 2018/02/06]
- Hart SN, Hoskin T, Shimelis H, et al. Comprehensive annotation of BRCA1 and BRCA2 missense variants by functionally validated sequence-based computational prediction models. *Genetics in medicine : official journal of the American College of Medical Genetics* 2019;21(1):71-80. doi: 10.1038/s41436-018-0018-4 [published Online First: 2018/06/10]
- Richardson ME, Hu C, Lee KY, et al. Strong functional data for pathogenicity or neutrality classify BRCA2 DNA-binding-domain variants of uncertain significance. *American journal of human genetics* 2021;108(3):458-68. doi: 10.1016/j.ajhg.2021.02.005 [published Online First: 2021/02/21]
- Easton DF, Deffenbaugh AM, Pruss D, et al. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. *American journal of human genetics* 2007;81(5):873-83. doi: 10.1086/521032 [published Online First: 2007/10/10]
- 12. Lindor NM, Guidugli L, Wang X, et al. A review of a multifactorial probability-based model for classification of BRCA1 and BRCA2 variants of uncertain significance (VUS). *Human mutation* 2012;33(1):8-21. doi: 10.1002/humu.21627 [published Online First: 2011/10/13]
- Parsons MT, Tudini E, Li H, et al. Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification. *Human mutation* 2019;40(9):1557-78. doi: 10.1002/humu.23818 [published Online First: 2019/05/28]