BRCA1/BRCA2: CanVIG-UK Gene-Specific **Guidance**

Date: 31/03/2023 Version: 1.18

A Garrett¹, L Loong¹, L King¹, S Allen¹, M Durkie², J. Drummond³, G.J. Burghel⁴, R. Robinson⁵, A Callaway^{6,7}, I. Berry⁵, A. Wallace⁴, S. Ellard⁸, E Baple⁸, H. Hanson^{1,9}, C.Turnbull^{1,10}

- 1) Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
- 2) Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust
- 3) East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- 4) Manchester Centre for Genomic Medicine and NW Laboratory Genetics Hub, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- 5) Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- 6) Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
- 7) Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
- 8) Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
- 9) St George's University Hospitals NHS Foundation Trust, Tooting, London, UK
- 10) The Royal Marsden NHS Foundation Trust, Fulham Road, London

For use in conjunction with CanVIG-UK Consensus Specification for Cancer susceptibility Genes of ACGS Best Practice Guidelines for Variant Classification. Evidence lines for which there are no gene-specific recommendations should be reviewed in context of CanVIG-UK Consensus Specification for Cancer Susceptibility Genes.

Evidence towards Pathogenicity

Evidence element and evide strengths allowed		Thresholds/data-sources/applications specifically relevant to BRCA1/BRCA2
PS4: Case-control: The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls	_VSTR _STR _MOD _SUP	 NHSD case control data can be used for case-control analysis: Controls should represent appropriate ethnicity and sex matching (i.e. female non-cancer NFE controls should be used if the case series consists predominantly of females, as with the current NHSD case series) and series denominator As this is an enriched series, OR≥10 is required Current data/denominator counts for base substitutions are available at CanVar-UK For non-base-substitutions i.e. deletions/duplications/insertions, NHSD counts can be accessed from CanVIG-UK If there are insufficient data to perform case-control analyses, PS4 can be applied:
		 at PS4_sup or PS4_mod if there are observations of the variant in ≥5 or ≥10 different families respectively with a pattern of diagnoses consistent with a hereditary breast and ovarian cancer syndrome and the variant is very rare or absent in control populations (i.e. PM2 has been applied)
PM2: Absent from	_MOD	Cancer-free female controls (of any/all ethnicities) should be
controls (or at extremely low frequency if recessive) in ESP, 1000GP, or ExAC	_SUP	used (due to low penetrance in male pathogenic variant carriers). Otherwise, the main CanVIG-UK consensus guidance should be followed.

PVS1: Predicted null variant (in a gene where LOF is a known mechanism of disease)	_STR _MOD _SUP	It is predicted that truncating variants occurring at the 3' end of the gene will not undergo NMD. The residues below demarcate the consensus boundary, 3' of which protein truncating variants are not established to result in NMD and/or impairment of function of residual protein. BRCA1 (NM_007294.3): 1855¹ BRCA2 (NM_000059.3): 3309² Based on ENIGMA recommendations, as re-initiation sites have also been shown to result in the loss of important functional domains in BRCA1 and BRCA2, it is acceptable to use PVS1 at a very strong level for variants identified within the first 100bp of								
		both BF A numb known may res list of s	RCA1 and the second of the sec	evel for variand BRCA2 variants at onaturally ene function ariants for one of the series	21. canonical y occurri nality. E which the	I splic ng in- NIGM varia	e sites frame 1A has ant trai	s are predic RNA isofo compiled nscript may	ted or rms th the be be	at low
		Gene	intron 5 intron 6 intron 7	C.301+1 C.301+2 C.442-1 C.442-2 C.548-1 C.548-2 C.593+1	Sup Sup Sup Sup N/A N/A N/A	Jene	intron 2 intron 3 intron 4 intron 6	c.68-1 c.68-2 c.317-1 c.317-2 c.425+1 c.425+2 c.517-1G>C, G>T c.517-2	Sup Sup N/A N/A N/A N/A N/A N/A	
		BRCA1	intron 8	c.594-1 c.594-2 c.670+1 c.670+2 c.671-1 c.671-2 c.4096+1	N/A N/A N/A N/A N/A Mod Mod Mod	BRCA2	intron 7 intron 9 intron 10 intron 11	c.631+1 c.631+2 c.794-1G>C, G>T c.794-2 c.1909+1 c.1909+2 c.6842-1 c.6842-2	N/A N/A N/A N/A N/A N/A N/A N/A	
		Adapta	intron 10 intron 11 intron 12	c.4096+2 c.4097-1G>C, G>T c.4097-2A>C, A>T c.4186-1 c.4186-2A>C, A>T c.4358-1 c.4358-2A>C, A>T	Sup Sup Sup Sup	d fort	intron 12 intron 19 intron 23 intron 24	c.9257-1G>C, G>T c.9257-2	Sup	
PS1: Same amino acid change as an established variant	_STR	guidelir Within t elemen	nes. forthco ts will	eming ACM all be incorn key doma	G guidan porated v	ice, it	is anti	cipated tha	at thes	
PM4: Protein-length-changing variant PM5: Novel missense change at an amino acid residue where a different missense change determined to be pathogenic seen before PP3: In silico: Multiple lines of computational evidence support a deleterious effect	_MOD _SUP _MOD _SUP	 Use of PM1_sup and/or PM4_sup for any variant within BRCA1 RING (aa 2-101), BRCT (aa 1650-1857) COILED-COIL DOMAIN (aa 1391-1424), BRCA2 DNA-binding domain (aa 2481-3186), and BRCA2 PALB2 binding domain (aa 10-40). Use of PM1_mod for missense at specific residues³: RING: 18, 22, 37, 39, 41, 44, 47, 61, 64, 71 BRCT: 1685, 1688, 1697, 1699, 1706, 1708, 1715, 1736, 1738, 1739, 1748, 1764, 1766, 1770, 1775, 1786, 1837, 1838, 1839, 1853 								
on the gene or gene product PM1, PP2: Enrichment/constraint: PP2: Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of disease PM1: Located in a	_STR _MOD _SUP	 DBD: 2607, 2626, 2627, 2663, 2722, 2723, 2748, 3052, 3124 PM1 cannot be used where functional data are being used for PS3, as per main CanVIG-UK guidance PP2 should not be used for BRCA1/BRCA2 Use of PM5, PS1, PP3 otherwise as per CanVIG-UK Consensus Specification 								

mutational hot spot and/or		
critical and well-established		
functional domain (e.g.		
active site of an enzyme)		
without benign variation		
PS3: Functional: Well-	_VSTR	BRCA1:
established in vitro or in vivo	_STR	Findlay et al, 20184: Strong
functional studies supportive	MOD	Bouwman et al, 2020 ⁵ : Strong
of a damaging effect on the	_	Starita et al, 2018 ¹⁵ : Strong
gene or gene product	_SUP	Fernandes et al, 2019 ⁶ : Supporting
gove at gove product		Petitalot et al, 2019 ⁷ : Supporting
		BRCA2:
		Guidugli et al, 20188/Hart et al, 20199/Richardson et al, 2021 ¹⁰ :
		Strong
		Mesman et al, 2019 ¹⁶ : Moderate
		See CanVIG Functional Assays Scores
		See the table at the bottom of this document for guidance on
		· · · · · · · · · · · · · · · · · · ·
PP1: Co-segregation with	_VSTR	combining assay results Segregation evidence extracted from multifactorial analysis data
disease in multiple affected		can be used within PP1/BS4 using the thresholds specified in the
family members in a gene	_STR	PP5/BP6 guidance. Where combined with multiple evidence of
definitively known to cause	_MOD	•
the disease	_SUP	other types, segregation evidence from multifactorial analysis
HIE UISEASE		data should be incorporated into the PP5/BP6 criteria
		Meiosis counting approaches may be used in addition if this
		evidence comes from families not already included in the
DOO/DIAG D		multifactorial analyses. Evidence cannot exceed 'Very strong'
PS2/PM6: De novo	_STR	
(maternity and paternity	_MOD	
confirmed/unconfirmed) in a	_SUP	
patient with the disease and		
no family history		
PM3: in trans with a	_STR	Frequency data regarding co-occurrence in trans extracted from
pathogenic variant	_MOD	multifactorial analyses should be incorporated into PM3 or BP2
(recessive disorders)	_SUP	using the thresholds described in the PP5/BP6 guidance. Where
		combined with multiple evidence of other types, frequency data
		regarding co-occurrence in trans from multifactorial analyses
		should be incorporated into PP5/BP6
		In addition, the SVI recommendations for in trans Criterion
		(PM3) can be used for either BRCA1 or BRCA2 for individuals
		with a Fanconi anaemia phenotype if this evidence comes from
		families not already included in the multifactorial analyses used
		for PP5. Evidence towards a Fanconi phenotype comprise:
		 Clinical: diagnosis of childhood cancer or
		skeletal/structural/developmental abnormalities
		Molecular/Cellular: aberration on mitomycin-induced
		chromosomal breakage +/- depletion of BRCA2 in
		lymphocytes
		Both clinical and molecular/cellular aberrations must be present
		for a case to contribute to evidence
		Evidence cannot exceed 'Strong'
		Note: Caution is required in inferring the pathogenicity for the
		monoallelic phenotype, as variants may be hypomorphic (e.g. a
		variant contributing and causing a Fanconi anaemia phenotype
		may be low penetrance for breast cancer). Where the majority of
		evidence for variant pathogenicity comes from observations of
		the variant in cases of Fanconi Anaemia, it may be appropriate t
		cone vaciano de cases do cadicido Abaerdia. O May de adoirondate t
		comment on this in the clinical report

PP5: Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation

_VSTR
_STR
_MOD
_SUP

Published multifactorial analysis data providing likelihood ratios (LR) or log likelihood ratios (LLR) may be used as data sources encompassing:

- Segregation (PP1/BS4)
- Specificity of familial and/or tumour phenotype (PP4/BP5)
- Co-occurrence in trans (PM3/BP2)

Where individual likelihood ratios are insufficient to assign evidence strength, a **combined score** encompassing multiple evidence types can instead be applied within PP5 to represent the totality of evidence.

Suitable analyses:

- Easton et al, 2007¹¹
- Vallée et al, 2012¹²
- Parsons et al, 2020¹³
- Caputo et al, 2021¹⁴

Evidence is presented as either a Likelihood Ratio (LR) or Log Likelihood Ratio (LLR).

If evidence is supplied as an LR: Use the table below to directly convert the LR to the applicable Evidence Strength.

If evidence is supplied as an LLR: First, convert the LLR to a Likelihood Ratio (LR) by finding the exponent of the LLR (for example, an LLR of 2.00 = an LR of 7.38); conversion of an LLR to an LR can be done using the =EXP() function within Excel. Once the LR is calculated, use the table below to directly convert the LR to the applicable Evidence Strength (LR of 7.38 = MOD).

Conversions from LR or LLR to Evidence (Exponent) points is also available for applicable variants at https://canvaruk.org/

Likelihood Ratio	Evidence (Exponent) Points	Evidence Strength
2.08 – 4.30	1	SUP
4.31 – 18.70	2	MOD
18.71 – 350.40	4	STR
≥ 350.41	8	VSTR

Explanatory Notes:

- Where multiple potentially valid LR/LLRs are available for a variant, the value from the most recent publication should be used.
- Evidence (Exponent) Points are calculated by applying the logarithm of the LR to base 2.08. A calculated Evidence Point that is between two categories (eg 3 points) is assigned the weaker strength of the two categories it lies between (eg MOD for 3 points)

Please note, use of classifications from other reputable sources (eg ClinVar) is no longer valid. Please refer to the consensus specification for further details.

PP4: Phenotypic specificity (Patient's phenotype or family history is highly specific for a _STR _MOD _SUP Tumour and family history phenotypic data extracted from multifactorial analyses should be incorporated into PP4 or BP5 using the thresholds described in the PP5/BP6 guidance. Where combined with multiple evidence of other types, tumour and family history phenotypic data from multifactorial analyses are

disease with a single genetic aetiology)	incorporated into the PP5 evidence criterion. Patient phenotypic evidence whose strength cannot be quantified should not be used. Evidence cannot exceed 'Strong'
--	--

Evidence towards Benignity

Evidence towards Benignity		
BA1/BS1: Allele frequency	_SA	BA1: MTAF = 0.001 (0.1%)
is "too high" in ExAC or	STR	BS1: MTAF = 0.0001 (0.01%)
gnomAD for disorder	_	The U95%CI should be used as the filtering allele count for the
		MTAF. This can be calculated using cardiodb or within gnomAD
		(see training resources from Miranda Durkie for methodology)
		Cancer-free female controls should be used (due to low
		penetrance in male pathogenic variant carriers)
BS2: Observation in	_STR	
controls inconsistent with	SUP	
disease penetrance.		
Observed in a healthy adult		
individual for a recessive		
(homozygous), dominant		
(heterozygous), or X-linked		
(hemizygous) disorder, with		
full penetrance expected at		
an early age		
BP4: In silico: Multiple lines	_SUP	
of computational evidence		
suggest no impact on gene		
or gene product		
(conservation, evolutionary,		
splicing impact, etc.)		
BP1: Missense variant in a	_SUP	Can be used for missense variants with no predicted splicing
gene for which primarily		effect (as per main CanVIG-UK consensus specification) at non-
truncating variants are		conserved residues outside of BRCA1 RING (aa 2-101), BRCT
known to cause disease		(aa 1650-1857) COILED-COIL DOMAIN (aa 1391-1424) and
		BRCA2 DNA-binding domain (ag 2481-3186) and BRCA2
		PALB2 binding domain (aa 10-40)
BP7: Synonymous (silent)	_SUP	
variant for which splicing		
prediction algorithms predict		
no impact to the splice		
consensus sequence	01.15	
BP3: In-frame	_SUP	
deletions/insertions in a		
repetitive region	0.770	
BS3: Well-established in	_STR	
vitro or in vivo functional	_MOD	
studies show no damaging	_SUP	
effect on protein function or splicing		
BS4: Non segregation with	STR	*see PP1
disease		300 1 1 1
discuse	_SUP	
BP2: Observed in trans	_STR	*see PM3
with a pathogenic variant	_SUP	
for a fully penetrant		
dominant gene/disorder or		
observed in cis		
BP6: Reputable source	_STR	*see PP5
recently reports variant as	_SUP	Likelihood Evidence Evidence
benign, but the evidence is		Ratio (Exponent) Strength
not available to the		Tratio (Exponent) Ottength

laboratory to perform an			Points		
independent evaluation		0.48 - 0.23	-1	SUP	
		0.22 - 0.05	-2	MOD	
		0.04 - 0.00285	-4	STR	
		<0.00284	-8	VSTR	
BP5: Alternate molecular	_SUP	*see PP4			
basis for disease					

Recommendations for the management of conflicting functional assay results See table below for management of discrepancy for BRCA1 variants between Findlay et al, 2018⁴ and Bouwman et al, 2020⁵ discordant assay results. For more general guidance regarding conflicting results from other functional assays, refer to the table in the main CanVIG-UK consensus specification.

Findlay Class	Findlay Score	Bouwman Platinum	Bouwman Olaparib	Bouwman DR-GFP	PS3_STR	BS3_STR
LOF	<-1.328		All deleterious/ likely deleterious (1 intermediate allowed)		✓	×
LOF	<-1.328	Any are neutral/likely neutral			*	*
INT (towards LOF)	-1.328 to -1.038	All deleterious/ likely deleterious			✓	×
INT (towards FUNC)	-1.038 to -0.748	All neutral/likely neutral			×	✓
INT	-1.328 to -0.78	Conflicting results or any intermediate		*	*	
FUNC	>-0.748	All neutral/likely neutral (1 intermediate allowed)		×	✓	
FUNC	>-0.748	Any are deleterious/likely deleterious		×	×	

N.B: Bouwman et al, 2020 "not clear" refers to opposite categorisation ± the standard deviation of repeat experiments and should be treated as conflicting assay results. Where a variant is LOF on the Findlay et al assay and has an RNA score of <-2, this indicates that LOF is due to interference with splicing and therefore should not be treated as conflicting evidence if the variant is neutral on the Bouwman et al assay.

Version History/Amendments

Revised version	Date	Section	Update	Amended by	Approved by
1.12	eş fo		Guidance on use of LLRs from published epidemiological studies amended to account for the use of natural logs in the statistics presented	Garrett	Turnbull
1.12	01/09/2021	PM1	Addition of critical residues in the DNA binding domain of BRCA2. Critical residues in all listed functional domains updated to mirror draft 2021 ENIGMA guidance	Garrett	Turnbull
1.12	01/09/2021	BP1	Resolution of typo in BRCT region specification	Garrett	Turnbull
1.13	15/10/2021	PVS1	Clarification that PVS1 may not be applicable for some of the variants at ENGIMA specified positions	Garrett	Turnbull
1.14	02/12/2021	PS4	Terminology change to reflect transition of PHE to NHSD	Garrett	Turnbull
1.14	02/12/2021	PVS1	Addition of recommendations for variants within the first 100bp	Callaway	CStAG
1.15	28/04/2022	PM1/ PM4	Clarification that PM1_sup and PM4_sup may be used in combination but PM4 not to be used at moderate. Removal of mention	Garrett	CStAG

			that CanVIG-UK provide non-white ethnicity counts under PS4		
1.16	28/07/2022	PP5	Removal of Lindor <i>et al</i> 2011 paper from recommended genetic epidemiology papers to use in calculating Evidence (Exponent) Points.	Allen	Turnbull
1.17	27/09/2022	PS4	Addition of PS4_mod application where ≥10 HBOC families observed.	Garrett	CStAG
1.18	31/03/2023	PP5/ BP6	Rewording of application details for clarity. Removal of reputable source evidence from PP5 per consensus specification. Addition of recommended analyses papers.	Allen	CStAG
1.18	31/03/2023	PVS1/ PM1/ PS3	Incorporation of functional assays, hotspot, and splice sites from upcoming ENIGMA recommendations.	Allen	CStAG

References

- 1. Draft ACMG/AMP Classification Rules Specified for BRCA1 & BRCA2 ENIGMA Variant Curation Expert Panel, Classification Criteria V1.0 2021-06-21., 2021.
- 2. Mesman RLS, Calléja F, Hendriks G, et al. The functional impact of variants of uncertain significance in BRCA2. *Genetics in medicine : official journal of the American College of Medical Genetics* 2019;21(2):293-302. doi: 10.1038/s41436-018-0052-2 [published Online First: 2018/07/11]
- 3. ENIGMA. *BRCA1/2* Gene Variant Classification Criteria Version 2.5.1 2017 [Available from: https://enigmaconsortium.org/library/general-documents/enigma-classification-criteria/.
- 4. Findlay GM, Daza RM, Martin B, et al. Accurate classification of BRCA1 variants with saturation genome editing https://sge.gs.washington.edu/BRCA1/. *Nature* 2018;562(7726):217-22. doi: 10.1038/s41586-018-0461-z [published Online First: 2018/09/14]
- 5. Bouwman P, van der Heijden I, van der Gulden H, et al. Functional Categorization of BRCA1 Variants of Uncertain Clinical Significance in Homologous Recombination Repair Complementation Assays. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2020;26(17):4559-68. doi: 10.1158/1078-0432.Ccr-20-0255 [published Online First: 2020/06/18]
- 6. Fernandes VC, Golubeva VA, Di Pietro G, et al. Impact of amino acid substitutions at secondary structures in the BRCT domains of the tumor suppressor BRCA1: Implications for clinical annotation. *The Journal of biological chemistry* 2019;294(15):5980-92. doi: 10.1074/jbc.RA118.005274 [published Online First: 2019/02/16]
- 7. Petitalot A, Dardillac E, Jacquet E, et al. Combining Homologous Recombination and Phosphopeptide-binding Data to Predict the Impact of BRCA1 BRCT Variants on Cancer Risk. *Mol Cancer Res* 2019;17(1):54-69. doi: 10.1158/1541-7786.Mcr-17-0357 [published Online First: 2018/09/28]
- 8. Guidugli L, Shimelis H, Masica DL, et al. Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches. *American journal of human genetics* 2018;102(2):233-48. doi: 10.1016/j.ajhg.2017.12.013 [published Online First: 2018/02/06]
- 9. Hart SN, Hoskin T, Shimelis H, et al. Comprehensive annotation of BRCA1 and BRCA2 missense variants by functionally validated sequence-based computational prediction models. *Genetics in medicine : official journal of the American College of Medical Genetics* 2019;21(1):71-80. doi: 10.1038/s41436-018-0018-4 [published Online First: 2018/06/10]
- 10. Richardson ME, Hu C, Lee KY, et al. Strong functional data for pathogenicity or neutrality classify BRCA2 DNA-binding-domain variants of uncertain significance. *American journal of human genetics* 2021;108(3):458-68. doi: 10.1016/j.ajhg.2021.02.005 [published Online First: 2021/02/21]
- 11. Easton DF, Deffenbaugh AM, Pruss D, et al. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancerpredisposition genes. *American journal of human genetics* 2007;81(5):873-83. doi: 10.1086/521032 [published Online First: 2007/10/10]

- 12. Vallée MP, Francy TC, Judkins MK, et al. Classification of missense substitutions in the BRCA genes: a database dedicated to Ex-UVs. *Hum Mutat.* 2012;33(1):22-28. doi:10.1002/humu.21629 [published Online First: 2011/11/03]
- 13. Parsons MT, Tudini E, Li H, et al. Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification. *Human mutation* 2019;40(9):1557-78. doi: 10.1002/humu.23818 [published Online First: 2019/05/28]
- 14. Caputo SM, Golmard L, Léone M, et al. Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach. *Am J Hum Genet*. 2021;108(10):1907-1923. doi:10.1016/j.ajhg.2021.09.003 [published Online First: 2021/09/30]
- 15. Starita LM, Islam MM, Banerjee T, et al. A Multiplex Homology-Directed DNA Repair Assay Reveals the Impact of More Than 1,000 BRCA1 Missense Substitution Variants on Protein Function. *Am J Hum Genet.* 2018;103(4):498-508. doi:10.1016/j.ajhg.2018.07.016 [published Online First: 2018/09/12]
- 16. Mesman RLS, Calléja FMGR, Hendriks G, et al. The functional impact of variants of uncertain significance in BRCA2. *Genet Med.* 2019;21(2):293-302. doi:10.1038/s41436-018-0052-2 [published Online First: 2018/07/10]